USA) was notified of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 3 Malayan tigers (Panthera tigris jacksoni) at a zoo in the state. Felids, including domestic cats and exotic big cats, have greater susceptibility to SARS-CoV-2 infection than other species (1-4). Infected domestic cats can transmit the virus to other cats via respiratory droplets or direct contact (4-6). However, the risk for cat-to-human transmission remains unclear. We investigated the SARS-CoV-2 outbreak in Tennessee to determine its source and provide recommendations to control the spread of infection. The StudyTiger 1, the index case, began showing clinical signs of coronavirus disease (COVID-19), including lethargy,
Background Acute gastroenteritis (AGE) is a common reason for children to receive medical care. However, the viral etiology of AGE illness is not well described in the post–rotavirus vaccine era, particularly in the outpatient (OP) setting. Methods Between 2012 and 2015, children 15 days through 17 years old presenting to Vanderbilt Children’s Hospital, Nashville, Tennessee, with AGE were enrolled prospectively from the inpatient, emergency department, and OP settings, and stool specimens were collected. Healthy controls (HCs) were enrolled and frequency matched for period, age group, race, and ethnicity. Stool specimens were tested by means of reverse-transcription real-time quantitative polymerase chain reaction for norovirus, sapovirus, and astrovirus RNA and by Rotaclone enzyme immunoassay for rotavirus antigen, followed by polymerase chain reaction verification of antigen detection. Results A total of 3705 AGE case patients and 1563 HCs were enrolled, among whom 2885 case patients (78%) and 1110 HCs (71%) provided stool specimens that were tested. All 4 viruses were more frequently detected in AGE case patients than in HCs (norovirus, 22% vs 8%, respectively; rotavirus, 10% vs 1%; sapovirus, 10% vs 5%; and astrovirus, 5% vs 2%; P < .001 for each virus). In the OP setting, rates of AGE due to norovirus were higher than rate for the other 3 viruses. Children <5 years old had higher OP AGE rates than older children for all viruses. Conclusions Norovirus remains the most common virus detected in all settings, occurring nearly twice as frequently as the next most common pathogens, sapovirus and rotavirus. Combined, norovirus, sapovirus, rotavirus, and astrovirus were associated with almost half of all AGE visits and therefore are an important reason for children to receive medical care.
Pathogen recovery was low from CIDT-positive specimens for enteric bacteria. This has important implications for the current enteric disease surveillance system, outbreak detection, and costs for public health programs.
Campylobacteriosis is the most common bacterial foodborne illness in the United States and is frequently associated with foods of animal origin. The goals of this study were to compare clinical and non-clinical Campylobacter populations from Tennessee (TN) and Pennsylvania (PA), use phylogenetic relatedness to assess source attribution patterns, and identify potential outbreak clusters. Campylobacter isolates studied (n = 3080) included TN clinical isolates collected and sequenced for routine surveillance, PA clinical isolates collected from patients at the University of Pennsylvania Health System facilities, and non-clinical isolates from both states for which sequencing reads were available on NCBI. Phylogenetic analyses were conducted to categorize isolates into species groups and determine the population structure of each species. Most isolates were C. jejuni (n = 2132, 69.2%) and C. coli (n = 921, 29.9%), while the remaining were C. lari (0.4%), C. upsaliensis (0.3%), and C. fetus (0.1%). The C. jejuni group consisted of three clades; most non-clinical isolates were of poultry (62.7%) or cattle (35.8%) origin, and 59.7 and 16.5% of clinical isolates were in subclades associated with poultry or cattle, respectively. The C. coli isolates grouped into two clades; most non-clinical isolates were from poultry (61.2%) or swine (29.0%) sources, and 74.5, 9.2, and 6.1% of clinical isolates were in subclades associated with poultry, cattle, or swine, respectively. Based on genomic similarity, we identified 42 C. jejuni and one C. coli potential outbreak clusters. The C. jejuni clusters contained 188 clinical isolates, 19.6% of the total C. jejuni clinical isolates, suggesting that a larger proportion of campylobacteriosis may be associated with outbreaks than previously determined.
Background In the United States, surveillance of norovirus gastroenteritis is largely restricted to outbreaks, limiting our knowledge of the contribution of sporadic illness to the overall impact on reported outbreaks. Understanding norovirus transmission dynamics is vital for improving preventive measures, including norovirus vaccine development. Methods We analyzed seasonal patterns and genotypic distribution between sporadic pediatric norovirus cases and reported norovirus outbreaks in middle Tennessee. Sporadic cases were ascertained via the New Vaccine Surveillance Network in a single county, while reported norovirus outbreaks from 7 middle Tennessee counties were included in the study. We investigated the predictive value of sporadic cases on outbreaks using a 2-state discrete Markov model. Results Between December 2012 and June 2016, there were 755 pediatric sporadic norovirus cases and 45 reported outbreaks. Almost half (42.2%) of outbreaks occurred in long-term care facilities. Most sporadic cases (74.9%) and reported outbreaks (86.8%) occurred between November and April. Peak sporadic norovirus activity was often contemporaneous with outbreak occurrence. Among both sporadic cases and outbreaks, GII genogroup noroviruses were most prevalent (90.1% and 83.3%), with GII.4 being the dominant genotype (39.0% and 52.8%). The predictive model suggested that the 3-day moving average of sporadic cases was positively associated with the probability of an outbreak occurring. Conclusions Despite the demographic differences between the surveillance populations, the seasonal and genotypic associations between sporadic cases and outbreaks are suggestive of contemporaneous community transmission. Public health agencies may use this knowledge to expand surveillance and identify target populations for interventions, including future vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.