Chromosome 15 (C15) imprinting disorders including Prader–Willi (PWS), Angelman (AS) and chromosome 15 duplication (Dup15q) syndromes are severe neurodevelopmental disorders caused by abnormal expression of genes from the 15q11–q13 region, associated with abnormal DNA methylation and/or copy number changes. This study compared changes in mRNA levels of UBE3A and SNORD116 located within the 15q11–q13 region between these disorders and their subtypes and related these to the clinical phenotypes. The study cohort included 58 participants affected with a C15 imprinting disorder (PWS = 27, AS = 21, Dup15q = 10) and 20 typically developing controls. Semi-quantitative analysis of mRNA from peripheral blood mononuclear cells (PBMCs) was performed using reverse transcription droplet digital polymerase chain reaction (PCR) for UBE3A and SNORD116 normalised to a panel of internal control genes determined using the geNorm approach. Participants completed an intellectual/developmental functioning assessment and the Autism Diagnostic Observation Schedule-2nd Edition. The Dup15q group was the only condition with significantly increased UBE3A mRNA levels when compared to the control group (p < 0.001). Both the AS and Dup15q groups also had significantly elevated SNORD116 mRNA levels compared to controls (AS: p < 0.0001; Dup15q: p = 0.002). Both UBE3A and SNORD116 mRNA levels were positively correlated with all developmental functioning scores in the deletion AS group (p < 0.001), and autism features (p < 0.001) in the non-deletion PWS group. The findings suggest presence of novel interactions between expression of UBE3A and SNORD116 in PBMCs and brain specific processes underlying motor and language impairments and autism features in these disorders.