The Bothnian Sea is an oligotrophic brackish basin characterized by low salinity and high concentrations of reactive iron, methane, and ammonium in its sediments, enabling the activity and interactions of many microbial guilds. Here, we studied the microbial network in these sediments by analyzing geochemical and microbial community depth profiles at one offshore and two near coastal sites. Analysis of 16S rRNA gene amplicons revealed a distinct depth stratification of both archaeal and bacterial taxa. The microbial communities at the two near coastal sites were more similar to each other than the offshore site, which is likely due to differences in the quality and rate of organic matter degradation. The abundance of methanotrophic archaea of the ANME-2a clade was shown to be related to the presence of methane and varied with sediment iron content. Metagenomic sequencing of sediment-derived DNA from below the sulfate-methane transition zone revealed a broad potential for respiratory sulfur metabolism via partially reduced sulfur species. The potential for nitrogen cycling was dominated by reductive processes via a truncated denitrification pathway encoded exclusively by bacterial lineages. Gene-centric fermentative metabolism analysis indicated a potential importance for acetate, formate, alcohol, and hydrogen metabolism. Methanogenic/-trophic pathways were dominated by Methanosaetaceae, Methanosarcinaceae, Methanomassiliicoccaceae, Methanoregulaceae, and ANME-2 archaea. Our results indicated flexible metabolic capabilities of core microbial community taxa, which could adapt to changing redox conditions, and with a spatial and depth distribution that is likely governed by the quality and input of available organic substrates and, for ANME-2, of iron oxides.