Marine sediments are the largest carbon sink on earth. Nearly half of dark carbon fixation in the oceans occurs in coastal sediments, but the microorganisms responsible are largely unknown. By integrating the 16S rRNA approach, single-cell genomics, metagenomics and transcriptomics with 14 C-carbon assimilation experiments, we show that uncultured Gammaproteobacteria account for 70-86% of dark carbon fixation in coastal sediments. First, we surveyed the bacterial 16S rRNA gene diversity of 13 tidal and sublittoral sediments across Europe and Australia to identify ubiquitous core groups of Gammaproteobacteria mainly affiliating with sulfur-oxidizing bacteria. These also accounted for a substantial fraction of the microbial community in anoxic, 490-cm-deep subsurface sediments. We then quantified dark carbon fixation by scintillography of specific microbial populations extracted and flow-sorted from sediments that were short-term incubated with 14 Cbicarbonate. We identified three distinct gammaproteobacterial clades covering diversity ranges on family to order level (the Acidiferrobacter, JTB255 and SSr clades) that made up 450% of dark carbon fixation in a tidal sediment. Consistent with these activity measurements, environmental transcripts of sulfur oxidation and carbon fixation genes mainly affiliated with those of sulfur-oxidizing Gammaproteobacteria. The co-localization of key genes of sulfur and hydrogen oxidation pathways and their expression in genomes of uncultured Gammaproteobacteria illustrates an unknown metabolic plasticity for sulfur oxidizers in marine sediments. Given their global distribution and high abundance, we propose that a stable assemblage of metabolically flexible Gammaproteobacteria drives important parts of marine carbon and sulfur cycles.
To date, very little is known about the bacterial core community of marine sediments. Here we study the environmental distribution, abundance and ecogenomics of the gammaproteobacterial Woeseiaceae/JTB255 marine benthic group. A meta-analysis of published work shows that the Woeseiaceae/JTB255 are ubiquitous and consistently rank among the most abundant 16S rRNA gene sequences in diverse marine sediments. They account for up to 22% of bacterial amplicons and 6% of total cell counts in European and Australian coastal sediments. The analysis of a single-cell genome, metagenomic bins and the genome of the next cultured relative Woeseia oceani indicated a broad physiological range, including heterotrophy and facultative autotrophy. All tested (meta)genomes encode a truncated denitrification pathway to nitrous oxide. The broad range of energy-yielding metabolisms possibly explains the ubiquity and high abundance of Woeseiaceae/JTB255 in marine sediments, where they carry out diverse, but yet unknown ecological functions.
Zero-valence sulfur (S°) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S°, but those consuming S° in the environment are largely unknown. We identified possible key players in S° turnover on native or introduced S° in benthic coastal and deep-sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S° disproportionation and S° respiration under anoxic conditions. Sulfate production from S° particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S°. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S₈), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S°, in particular S8 , likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S° at the seafloor surface.
Summary Propionate is an important intermediate in the anaerobic mineralization of organic matter. In methanogenic environments, its degradation relies on syntrophic associations between syntrophic propionate‐oxidizing bacteria (SPOB) and Archaea. However, only 10 isolated species have been identified as SPOB so far. We report syntrophic propionate oxidation in thermophilic enrichments of Candidatus Syntrophosphaera thermopropionivorans, a novel representative of the candidate phylum Cloacimonetes. In enrichment culture, methane was produced from propionate, while Ca. S. thermopropionivorans contributed 63% to total bacterial cells. The draft genome of Ca. S. thermopropionivorans encodes genes for propionate oxidation via methymalonyl‐CoA. Phylogenetically, Ca. S. thermopropionivorans affiliates with the uncultured Cloacimonadaceae W5 and is more distantly related (86.4% 16S rRNA gene identity) to Ca. Cloacimonas acidaminovorans. Although Ca. S. thermopropionivorans was enriched from a thermophilic biogas reactor, Ca. Syntrophosphaera was in particular associated with mesophilic anaerobic digestion systems. 16S rRNA gene amplicon sequencng and a novel genus‐specific quantitative PCR assay consistently identified Ca. Syntrophosphaera/Cloacimonadaceae W5 in 9 of 12 tested full‐scale biogas reactors thereby outnumbering other SPOB such as Pelotomaculum, Smithella and Syntrophobacter. Taken together the ubiquity and abundance of Ca. Syntrophosphaera, those SPOB might be key players for syntrophic propionate metabolism that have been overlooked before.
Background: Anaerobic digestion (AD) is a globally important technology for effective waste and wastewater management. In AD, microorganisms interact in a complex food web for the production of biogas. Here, acetoclastic methanogens and syntrophic acetate-oxidizing bacteria (SAOB) compete for acetate, a major intermediate in the mineralization of organic matter. Although evidence is emerging that syntrophic acetate oxidation is an important pathway for methane production, knowledge about the SAOB is still very limited. Results: A metabolic reconstruction of metagenome-assembled genomes (MAGs) from a thermophilic solid state biowaste digester covered the basic functions of the biogas microbial community. Firmicutes was the most abundant phylum in the metagenome (53%) harboring species that take place in various functions ranging from the hydrolysis of polymers to syntrophic acetate oxidation. The Wood-Ljungdahl pathway for syntrophic acetate oxidation and corresponding genes for energy conservation were identified in a Dethiobacteraceae MAG that is phylogenetically related to known SAOB. 16S rRNA gene amplicon sequencing and enrichment cultivation consistently identified the uncultured Dethiobacteraceae together with Syntrophaceticus, Tepidanaerobacter, and unclassified Clostridia as members of a potential acetate-oxidizing core community in nine full-scare digesters, whereas acetoclastic methanogens were barely detected. Conclusions: Results presented here provide new insights into a remarkable anaerobic digestion ecosystem where acetate catabolism is mainly realized by Bacteria. Metagenomics and enrichment cultivation revealed a core community of diverse and novel uncultured acetate-oxidizing bacteria and point to a particular niche for them in dry fermentation of biowaste. Their genomic repertoire suggests metabolic plasticity besides the potential for syntrophic acetate oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.