2020
DOI: 10.1007/978-3-030-59082-6_12
|View full text |Cite
|
Sign up to set email alerts
|

GenPR: Generative PageRank Framework for Semi-supervised Learning on Citation Graphs

Abstract: Nowadays, Semi-Supervised Learning (SSL) on citation graph data sets is a rapidly growing area of research. However, the recently proposed graph-based SSL algorithms use a default adjacency matrix with binary weights on edges (citations), that causes a loss of the nodes (papers) similarity information. In this work, therefore, we propose a framework focused on embedding PageRank SSL in a generative model. This framework allows one to do joint training of nodes latent space representation and label spreading th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 3 publications
0
1
0
Order By: Relevance
“…The recent advances in GB-SSL can be classified into the following rapidly growing directions: (1) classical linear graph diffusion algorithms which apply the graph structure for spreading the information of labelled nodes through it, such as Label Propagation (LP) [33], PageRank SSL (PRSSL) [1], or manifold regularization (ManiReg) [4]; and (2) graph-convolution based neural network algorithms. The latter category can be further seperated into (i) nonlinear graph diffusion algorithms, which apply convolution on the graph's adjacency matrix A with node features, such as Graph Convolution Network (GCN) [19], approximated Personalized graph neural network (APPNP) [20], Planetoid [32], or DeepWalk [23]; and (ii) graph convolution deep generative models, focusing on the application of nonlinear graph convolution algorithms with respect to the latent representation of nodes/edges: GenPR [18], Graphite [13].…”
Section: Graph-based Semi-supervised Learningmentioning
confidence: 99%
“…The recent advances in GB-SSL can be classified into the following rapidly growing directions: (1) classical linear graph diffusion algorithms which apply the graph structure for spreading the information of labelled nodes through it, such as Label Propagation (LP) [33], PageRank SSL (PRSSL) [1], or manifold regularization (ManiReg) [4]; and (2) graph-convolution based neural network algorithms. The latter category can be further seperated into (i) nonlinear graph diffusion algorithms, which apply convolution on the graph's adjacency matrix A with node features, such as Graph Convolution Network (GCN) [19], approximated Personalized graph neural network (APPNP) [20], Planetoid [32], or DeepWalk [23]; and (ii) graph convolution deep generative models, focusing on the application of nonlinear graph convolution algorithms with respect to the latent representation of nodes/edges: GenPR [18], Graphite [13].…”
Section: Graph-based Semi-supervised Learningmentioning
confidence: 99%