Nowadays, Semi-Supervised Learning (SSL) on citation graph data sets is a rapidly growing area of research. However, the recently proposed graph-based SSL algorithms use a default adjacency matrix with binary weights on edges (citations), that causes a loss of the nodes (papers) similarity information. In this work, therefore, we propose a framework focused on embedding PageRank SSL in a generative model. This framework allows one to do joint training of nodes latent space representation and label spreading through the reweighted adjacency matrix by node similarities in the latent space. We explain that a generative model can improve accuracy and reduce the number of iteration steps for PageRank SSL. Moreover, we show that our framework outperforms the best graph-based SSL algorithms on four public citation graph data sets and improves the interpretability of classification results.
A novel framework called Graph diffusion & PCA (GDPCA) is proposed in the context of semi-supervised learning on graph structured data. It combines a modified Principal Component Analysis with the classical supervised loss and Laplacian regularization, thus handling the case where the adjacency matrix is Sparse and avoiding the Curse of dimensionality. Our framework can be applied to non-graph datasets as well, such as images by constructing similarity graph. GDPCA improves node classification by enriching the local graph structure by node covariance. We demonstrate the performance of GDPCA in experiments on citation networks and images, and we show that GDPCA compares favourably with the best state-of-the-art algorithms and has significantly lower computational complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.