2020
DOI: 10.1007/s10708-020-10143-1
|View full text |Cite
|
Sign up to set email alerts
|

Geo spatial variation of dengue risk zone in Madurai city using autocorrelation techniques

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
6
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(8 citation statements)
references
References 35 publications
0
6
0
2
Order By: Relevance
“…Penelitian yang dilakukan di Kabupaten Lumajang, Indonesia, menunjukkan pola sebaran kasus DBD termasuk kategori dispersed atau menyebar (13). Pola sebaran kasus DBD di Kota Madurai, India, juga termasuk kategori dispersed (menyebar) (14). Selain itu, sebaran kasus DBD di wilayah Seksyen 7 Shah Alam, Malaysia, juga menunjukkan autokorelasi spasial dengan kategori clustered atau berkerumun (15).…”
Section: Pembahasan Autokorelasi Spasial Demam Berdarah Dengueunclassified
“…Penelitian yang dilakukan di Kabupaten Lumajang, Indonesia, menunjukkan pola sebaran kasus DBD termasuk kategori dispersed atau menyebar (13). Pola sebaran kasus DBD di Kota Madurai, India, juga termasuk kategori dispersed (menyebar) (14). Selain itu, sebaran kasus DBD di wilayah Seksyen 7 Shah Alam, Malaysia, juga menunjukkan autokorelasi spasial dengan kategori clustered atau berkerumun (15).…”
Section: Pembahasan Autokorelasi Spasial Demam Berdarah Dengueunclassified
“…Madurai, situated in Tamil Nadu is one of the major dengue endemic region among various regions in India [10,11]. Aedes aegypti and Ae.…”
Section: Mosquito Sample Collectionmentioning
confidence: 99%
“…An association has been reported in Madurai district of Tamil Nadu between severe dengue epidemics and an increase in Ae. albopictus population during wet season [8][9][10][11][12]. Moreover, other studies in India have also highlighted the signi cance of Aedes mosquitoes as dengue vectors, emphasizing on vectorial capacity [13,14], insecticide susceptibility [15], and genetic diversity [16].…”
Section: Introductionmentioning
confidence: 99%
“…Thus, the use of global and local spatial-temporal analysis tools such as the nearest neighbour index (NNI) [ 11 ]; the Getis Ord-Gi* statistic, used to detect hot and cold dengue spots with geographically homogeneous high or low values [ 12 ]; and kernel density, applied in several studies on dengue [ 13 , 14 ] among other techniques, allow the generation of maps that highlight the geographic areas and population groups at risk [ 15 , 16 ]. Those generated maps can serve as a basis for responsible institutions to design strategies for preventing and reducing the risk of dengue epidemics.…”
Section: Introductionmentioning
confidence: 99%