Background: Cancer patients show increased morbidity with COVID-19 and need effective immunization strategies. Many healthcare regulatory agencies recommend administering 'booster' doses of COVID-19 vaccines beyond the standard 2-dose series, for this group of patients. Therefore, studying the efficacy of these additional vaccine doses against SARS-CoV-2 and variants of concern is of utmost importance in this immunocompromised patient population.Methods: We conducted a prospective single arm clinical trial enrolling patients with cancer that had received two doses of mRNA or one dose of AD26.CoV2.S vaccine and administered a 3rd dose of mRNA vaccine. We further enrolled patients that had no or low responses to three mRNA COVID vaccines and assessed the efficacy of a 4th dose of mRNA vaccine. Efficacy was assessed by changes in anti-spike antibody, T-cell activity and neutralization activity were again assessed at baseline and 4 weeks.Results: We demonstrate that a 3rd dose of COVID-19 vaccine leads to seroconversion in 57% of patients that were seronegative after primary vaccination series. The immune response is durable as assessed by anti-S antibody titers, T-cell activity and neutralization activity against wild-type SARS-CoV2 and BA1.1.529 at 6 months of follow up. A subset of severely immunocompromised hematologic malignancy patients that were unable to mount an adequate immune response (titer <1000 AU/mL) after the 3rd dose and were treated with a 4th dose in a prospective clinical trial which led to adequate immune-boost in 67% of patients. Low baseline IgM levels and CD19 counts were associated with inadequate seroconversion. Booster doses induced limited neutralization activity against the Omicron variant.Conclusions: These results indicate that 3rd dose of COVID vaccine induces durable immunity in cancer patients and an additional dose can further stimulate immunity in a subset of patients with inadequate response.Funding: Leukemia lymphoma society, National Cancer Institute.Clinical trial identifier: NCT05016622.