Abstract. The terrestrial hyperalkaline springs of Prony Bay (southern lagoon, New Caledonia) have been known since the nineteenth century, but a recent high-resolution bathymetric survey of the seafloor has revealed the existence of numerous submarine structures similar to the well-known Aiguille de Prony, which are also the location of high-pH fluid discharge into the lagoon. During the HYDROPRONY cruise (28 October to 13 November 2011), samples of waters, gases and concretions were collected by scuba divers at underwater vents. Four of these sampling sites are located in Prony Bay at depths up to 50 m. One (Bain des Japonais spring) is also in Prony Bay but uncovered at low tide and another (Rivière des Kaoris spring) is on land slightly above the seawater level at high tide. We report the chemical composition (Na, K, Ca, Mg, Cl, SO 4 , dissolved inorganic carbon, SiO 2 (aq)) of 45 water samples collected at six sites of high-pH water discharge, as well as the composition of gases.Temperatures reach 37 • C at the Bain des Japonais and 32 • C at the spring of the Kaoris. Gas bubbling was observed only at these two springs. The emitted gases contain between 12 and 30 % of hydrogen in volume of dry gas, 6 to 14 % of methane, and 56 to 72 % of nitrogen, with trace amounts of carbon dioxide, ethane and propane.pH values and salinities of all the 45 collected water samples range from the seawater values (8.2 and 35 g L −1 ) to hyperalkaline freshwaters of the Ca-OH type (pH 11 and salinities as low as 0.3 g L −1 ) showing that the collected samples are always a mixture of a hyperalkaline fluid of meteoric origin and ambient seawater. Cl-normalized concentrations of dissolved major elements first show that the Bain des Japonais is distinct from the other sites. Water collected at this site are three component mixtures involving the highpH fluid, the lagoon seawater and the river water from the nearby Rivière du Carénage. The chemical compositions of
Published by Copernicus Publications on behalf of the European Geosciences Union.
C. Monnin et al.: Low temperature hyperalkaline hydrothermal system of Prony Baythe hyperalkaline endmembers (at pH 11) are not significantly different from one site to the other although the sites are several kilometres away from each other and are located on different ultramafic substrata. The very low salinity of the hyperalkaline endmembers shows that seawater does not percolate through the ultramafic formation.Mixing of the hyperalkaline hydrothermal endmember with local seawater produces large ranges and very sharp gradients of pH, salinity and dissolved element concentrations. There is a major change in the composition of the water samples at a pH around 10, which delimitates the marine environment from the hyperalkaline environment. The redox potential evolves toward negative values at high pH indicative of the reducing conditions due to bubbling of the H 2 -rich gas. The calculation of the mineral saturation states carried out for the Na-K-Ca-Mg-Cl-SO 4 -DIC-SiO 2 -H2O system shows...