In this article, we try to capture the influence of deviation from standard Kerr black hole spacetime on observed high-frequency quasi-periodic oscillations signal. We explore the dynamics of test particles in the field of rotating compact objects governed by the various modifications of the standard Kerr black hole spacetime and apply the model of epicyclic oscillations of Keplerian discs to the observed microquasars and active galactic nuclei high-frequency quasi-periodic oscillations data. We present a generalized formalism for fitting two well-known high-frequency quasi-periodic oscillation models: namely, the epicyclic resonance model and the relativistic precession model. This is done under the assumption of stationary, axisymmetric, and asymptotically flat spacetimes. Recently, we have used the same set of stationary, axisymmetric, and asymptotically flat spacetimes, and estimated the restrictions of spacetime parameters with the help of hot-spot data of three flares observed at Sgr~A* by GRAVITY instrument \citep{Shahzadi-et-al:2022:EPJC:}. The aim of this work is not to test a particular theoretical model or to determine and constrain its parameters, but to map a set of well-astrophysically motivated deviations from classical Kerr black hole spacetime and demonstrate which ones provide the best fit for high-frequency quasi-periodic oscillations data and could be fruitful for future exploration.