There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESIII and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESIII, as well as the threshold measurements of charm mesons and charm baryons.
We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESIII during the remaining operation period of BEPCII. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCII to higher luminosity.
An angular analysis of the B 0 → K Ã0 ð→ K þ π − Þμ þ μ − decay is presented using a dataset corresponding to an integrated luminosity of 4.7 fb −1 of pp collision data collected with the LHCb experiment. The full set of CP-averaged observables are determined in bins of the invariant mass squared of the dimuon system. Contamination from decays with the K þ π − system in an S-wave configuration is taken into account. The tension seen between the previous LHCb results and the standard model predictions persists with the new data. The precise value of the significance of this tension depends on the choice of theory nuisance parameters.
The dense clusters within the Serpens Molecular Cloud are among the most active regions of nearby star formation. In this paper, we use Gaia DR2 parallaxes and proper motions to statistically measure ∼ 1167 kinematic members of Serpens, few of which were previously identified, to evaluate the star formation history of the complex. The optical members of Serpens are concentrated in three distinct groups located at 380-480 pc; the densest clusters are still highly obscured by optically-thick dust and have few optical members. The total population of young stars and protostars in Serpens is at least 2000 stars, including past surveys that were most sensitive to protostars and disks, and may be far higher. Distances to dark clouds measured from deficits in star counts are consistent with the distances to the optical star clusters. The Serpens Molecular Cloud is seen in the foreground of the Aquila Rift, dark clouds located at 600-700 pc, and behind patchy extinction, here called the Serpens Cirrus, located at ∼ 250 pc. Based on the lack of a distributed population of older stars, the star formation rate throughout the Serpens Molecular Cloud increased by at least a factor of 20 within the past ∼ 5 Myr. The optically bright stars in Serpens Northeast are visible because their natal molecular cloud has been eroded and not because they were flung outwards from a central factory of star formation. The separation between subclusters of 20-100 pc and the absence of an older population leads to speculation that an external forcing was needed to trigger the active star formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.