Highlights d SARS-CoV-2 genome sequencing and phylogenetic analyses identify 35 recurrent mutations d Association with 117 clinical phenotypes reveals potentially important mutations d D500-532 in Nsp1 coding region correlates with lower viral load and serum IFN-b d Viral isolates with D500-532 mutation induce lower IFN-I response in the infected cells
A rapid, on-site,
and accurate SARS-CoV-2 detection method is crucial for the prevention
and control of the COVID-19 epidemic. However, such an ideal screening
technology has not yet been developed for the diagnosis of SARS-CoV-2.
Here, we have developed a deep learning-based surface-enhanced Raman
spectroscopy technique for the sensitive, rapid, and on-site detection
of the SARS-CoV-2 antigen in the throat swabs or sputum from 30 confirmed
COVID-19 patients. A Raman database based on the spike protein of
SARS-CoV-2 was established from experiments and theoretical calculations.
The corresponding biochemical foundation for this method is also discussed.
The deep learning model could predict the SARS-CoV-2 antigen with
an identification accuracy of 87.7%. These results suggested that
this method has great potential for the diagnosis, monitoring, and
control of SARS-CoV-2 worldwide.
Background
Fusobacterium nucleatum (F. n) is an important opportunistic pathogen causing oral and gastrointestinal disease. Faecalibacterium prausnitzii (F. p) is a next-generation probiotic and could serve as a biomarker of gut eubiosis/dysbiosis to some extent. Alterations in the human oral and gut microbiomes are associated with viral respiratory infection. The aim of this study was to characterise the oral and fecal bacterial biomarker (i.e., F. n and F. p) in COVID-19 patients by qPCR and investigate the pharyngeal microbiome of COVID-19 patients through metagenomic next-generation sequencing (mNGS).
Results
Pharyngeal F. n was significantly increased in COVID-19 patients, and it was higher in male than female patients. Increased abundance of pharyngeal F. n was associated with a higher risk of a positive SARS-CoV-2 test (adjusted OR = 1.32, 95% CI = 1.06 ~ 1.65, P < 0.05). A classifier to distinguish COVID-19 patients from the healthy controls based on the pharyngeal F. n was constructed and achieved an area under the curve (AUC) of 0.843 (95% CI = 0.688 ~ 0.940, P < 0.001). However, the level of fecal F. n and fecal F. p remained unaltered between groups. Besides, mNGS showed that the pharyngeal swabs of COVID-19 patients were dominated by opportunistic pathogens.
Conclusions
Pharyngeal but not fecal F. n was significantly increased in COVID-19 patients, clinicians should pay careful attention to potential coinfection. Pharyngeal F. n may serve as a promising candidate indicator for COVID-19.
H9N2 avian influenza virus circulates widely in poultry and has been responsible for sporadic human infections in several regions. Few studies have been conducted on the pathogenicity of H9N2 AIV isolates that have different genomic features. We compared the pathology induced by a novel reassortant H9N2 virus and two currently circulating H9N2 viruses that have different genomic features in ferrets. The results showed that the three viruses can induce infections with various amounts of viral shedding in ferrets. The novel H9N2 induced respiratory infection, but no pathological lesions were observed in lung tissues. The other two viruses induced mild to intermediate pathological lesions in lung tissues, although the clinical signs presented mildly in ferrets. The pathological lesions presented a diversity consistent with viral replication in ferrets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.