Flood inundation remains challenging to map, model, and forecast because it requires detailed representations of hydrologic and hydraulic processes. Recently, Continental‐Scale Flood Inundation Mapping (CFIM), an empirical approach with fewer data demands, has been suggested. This approach uses National Water Model forecast discharge with Height Above Nearest Drainage (HAND) calculated from a digital elevation model to approximate reach‐averaged hydraulic properties, estimate a synthetic rating curve, and map near real‐time flood inundation from stage. In 2017, rapid snowmelt resulted in a record flood on the Bear River in Utah, USA. In this study, we evaluated the CFIM method over the river section where this flooding occurred. We compared modeled flood inundation with the flood inundation observed in high‐resolution Planet RapidEye satellite imagery. Differences were attributed to discrepancies between observed and forecast discharges but also notably due to shortcomings in the derivation of HAND from National Elevation Dataset as implemented in CFIM, and possibly due to suboptimal hydraulic roughness parameter. Examining these differences highlights limitations in the HAND terrain analysis methodology. We present a set of improvements developed to overcome some limitations and advance CFIM outcomes. These include conditioning the topography using high‐resolution hydrography, dispersing nodes used to subdivide the river into reaches and catchments, and using a high‐resolution digital elevation model. We also suggest an approach to obtain a reach specific Manning's n from observed inundation and validated improvements for the flood of March 2019 in the Ocheyedan River, Iowa. The methods developed have the potential to improve CFIM.