Conducting this research contributes to a deeper understanding of the correlation between atmospheric environmental quality and lung cancer incidence, and provides the scientific basis for formulating effective environmental protection and lung cancer prevention and control strategies. Lung cancer incidence in China has strong spatial variation. However, few studies have systematically revealed the characteristics of the spatial variation in lung cancer incidence, and have explained the causes of this spatial variation in lung cancer incidence from the perspectives of multiple components of the atmospheric environment to explain this spatial variation in lung cancer incidence. To address research limitations, we first analyze the spatial variation and spatial correlation characteristics of lung cancer incidence in China. Then, we build a spatial regression model using GeoDa software with lung cancer incidence as the dependent variable, five atmospheric environment factors—particulate matter 2.5 (PM2.5) concentration, temperature, atmospheric pressure, and elevation as explanatory variables, and four socio-economic characteristics as control variables to systematically analyze the influence and intensity of these factors on lung cancer incidence. The results show that lung cancer incidence in China has apparent changes in geographical and spatial unevenness, and spatial autocorrelation characteristics. In China, the lung cancer incidence is relatively high in Northeast China, while some areas of high lung cancer incidence still exist in Central China, Southwest China and South China, although the overall lung cancer incidence is relatively low. The atmospheric environment significantly affects lung cancer incidence. Different elements of the atmospheric environment vary in the direction and extent of their influence on the development of lung cancer. A 1% increase in PM2.5 concentration is associated with a level of 0.002975 increase in lung cancer incidence. Atmospheric pressure positively affects lung cancer incidence, and an increase in atmospheric pressure by 1% increases lung cancer incidence by a level of 0.026061. Conversely, a 1% increase in temperature is linked to a level of 0.006443 decreases in lung cancer incidence, and a negative correlation exists between elevation and lung cancer incidence, where an increase in elevation by 1% correlates with a decrease in lung cancer incidence by a level of 0.000934. The core influencing factors of lung cancer incidence in the seven geographical divisions of China exhibit variations. This study facilitates our understanding of the spatial variation characteristics of lung cancer incidence in China on a finer scale, while also offering a more diverse perspective on the impact of the atmospheric environment on lung cancer incidence.