The proposed Gibraltar Strait tunnel will cross two zones with breccia consisting of a chaotic mixture of blocks and stones embedded in a clay matrix. The breccia is saturated, has a high porosity and exhibits poor mechanical properties in the range between hard soils and weak rocks. The overburden and high in situ pore pressures in combination with the low strength of the breccia may lead to heavy squeezing. The crossing of the breccia zones thus represents one of the key challenges in the construction of the tunnel. In order to improve our understanding of the mechanical behaviour of the breccias, a series of triaxial compressions tests were carried out. Standard rock mechanics test equipment was not adequate for this purpose, because it does not provide pore pressure control, which is important in the case of saturated porous materials. Pore pressure control is routine in soil mechanics tests, but standard soil mechanics equipment allows only for relatively low nominal loads and pressures. In addition, the low hydraulic conductivity of the breccias demands extremely low loading rates and a long test duration. For these reasons, we re-designed several components of the test apparatus to investigate the mechanical behaviour of the breccia by means of consolidated drained and undrained tests. The tests provided important results concerning the strength, volumetric behaviour, consolidation state and hydraulic conductivity of the breccias. The present paper describes the test equipment and procedures, provides an overview of the test results and discusses features of the mechanical behaviour of the breccias which make them qualitatively different from other weak rocks such as kakirites-a typical squeezing rock in alpine tunnelling. The paper also demonstrates the practical importance of the experimental findings for tunnelling in general. More specifically, it investigates the short-term ground response to tunnel excavation from the perspective of elasto-plastic behaviour with the Mohr-Coulomb yield criterion. The computational results indicate that the breccias will probably experience very large deformations already around the advancing tunnel heading, which can be reduced considerably, however, by advance drainage. The analyses additionally show that plastic dilatancy is favourable with respect to the short-term response, thus highlighting the importance of the constitutive model when it comes to theoretical predictions.