Lava has complex geochemical characteristics based on differences in eruption centers, eruptive events, and flow emplacement. Characterization of lava is useful for understanding the geological conditions of a volcanic region. To complement geochemical methods, rock magnetic methods are being used to analyze lava. To explore the potential uses of rock magnetic methods for lava characterization, a series of magnetic measurements were completed in lava samples from eight locations in the Ijen Volcanic Complex (IVC) in Banyuwangi, East Java, Indonesia. These locations were grouped into two eruption centers: Ijen Crater and Mount Anyar. The magnetic measurements included frequency-dependent magnetic susceptibility, thermomagnetic, anhysteretic remanent magnetization (ARM), isothermal remanent magnetization (IRM), and hysteresis curve analyses. These measurements were supplemented using X-ray fluorescence, petrography analyses, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS). Based on their lithology, lava samples were categorized into basalt, basaltic andesite, and basaltic trachyandesite. The dominant magnetic mineral contained in the sample was iron-rich titanomagnetite and titanium-rich titanomagnetite with a magnetic pseudo-single-domain and small amounts of superparamagnetic grain minerals in some samples. The significant difference in mass specific susceptibility (χ LF ) is caused by differences in the crystallization process. The differences in susceptibility frequency dependence (χ FD ) highlighted the differences in the magma cooling rate, demonstrated by the differences in the percentage of opaque mineral groundmass. The rock magnetic method was proven to support the geochemistry and petrography methods used to characterize lava and identify the causes of differences in lava characteristics.