This paper presents a new method for error modeling and studies the kinematic calibration of redundantly actuated parallel kinematic machines (RA-PKM). First, a n-DOF RA-PKM is split into several n-DOF non-redundantly actuated sub-mechanisms by removing actuators in limbs in an ergodic manner without changing the DOF. The error model of the sub-mechanisms is established by differentiating the forward kinematics. Then, the complete error model of the RA-PKM is obtained by a weighted summation of errors for all sub-mechanisms. Finally, a kinematic calibration experiments are performed on a 3-DOF RA-PKM to verify the method of error modeling. The positioning and orientation error of the moving platform is replaced by the positioning error of the tool center point, which was reduced considerably from 3.427 mm to 0.177 mm through kinematic calibration. The experimental results demonstrate the improvement of the kinematic accuracy after kinematic calibration using the proposed error modeling method.