2007
DOI: 10.1016/j.engstruct.2006.01.016
|View full text |Cite
|
Sign up to set email alerts
|

Geometric and material nonlinear analyses of elastically restrained arches

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0
1

Year Published

2010
2010
2021
2021

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 33 publications
(10 citation statements)
references
References 15 publications
0
9
0
1
Order By: Relevance
“…In addition to the snap-through (limit point) buckling, parabolic arches can buckle also in an anti-symmetric bifurcation fashion [17,19]. It has been shown [17,19] that when this bifurcation buckling occurs, the force parameter b needs to satisfy b ¼ p; and b ¼ 1:4303p ð20Þ for pin-ended and fixed arches respectively, which can be substituted into the non-linear equilibrium equation given by Eq.…”
Section: Qpmentioning
confidence: 98%
See 2 more Smart Citations
“…In addition to the snap-through (limit point) buckling, parabolic arches can buckle also in an anti-symmetric bifurcation fashion [17,19]. It has been shown [17,19] that when this bifurcation buckling occurs, the force parameter b needs to satisfy b ¼ p; and b ¼ 1:4303p ð20Þ for pin-ended and fixed arches respectively, which can be substituted into the non-linear equilibrium equation given by Eq.…”
Section: Qpmentioning
confidence: 98%
“…(9) and (12) has limit points [17,19]. Because limit points are local maximum or minimum points, differentiating the non-linear equilibrium equation given by Eq.…”
Section: Qpmentioning
confidence: 99%
See 1 more Smart Citation
“…Note how the MSE evaluation of the yield function could also be conveniently exploited in different contexts of analysis where both material and geometrical nonlinearities occur. This could be particularly convenient in path following analysis especially when using corotational approaches (see for example [33,28,34]). …”
Section: The Approximation Of E Using a Minkowski Sum Of Ellipsoidsmentioning
confidence: 99%
“…Didelis indėlis į pavienių lanksčiai ir standžiai įtvirtintų plieninių arkų elgsenos ypatumus yra įdėtas Australijos mokslininkų, tokių kaip Pi, Trahair ir Bradford, kurie vertino ne tik pavienių arkų darbo stadiją, elemento ir sistemos geometrinius rodiklius (lenkiamasis standis, arkos pakylos aukštis ir tarpatramio ilgis), bet ir pradinius įtempius, geometrinius nuokrypius ir konstrukcijos geometrinį netiesiškumą (Pi, Trahair 1999;Pi, Bradford 2004;Pi et al 2008;Zhao et al 2013). Todėl plieninių pavienių arkų ir arkų, sujungtų su styga pakabomis, geometrinio netiesiškumo vertinimas dažniausiai siejamas su arkos pastovumo užtikrinimu arba stabilumo praradimu (Pi et al 2007). Netiesinė konstrukcijos elgsena yra ypač aktuali statiš-kai neišsprendžiamoms sistemoms, tokioms kaip tinkliniai arkiniai tiltai.…”
Section: įVadasunclassified