Nowadays, the integration between photogrammetry and structure from motion (SFM) has become much closer, and many attempts have been made to combine the two approaches to realize the positioning, calibration, and 3D reconstruction of a large number of images. For the positioning and calibration of high oblique frame sweep (HOFS) aerial cameras, a quadrifocal tensor SFM photogrammetry technique is proposed to resolve the positioning and calibration task of such cameras. It adopts the quadrifocal tensor idea into the OpenMVG SFM pipeline to solve the complexity problem caused by the small single-viewing imaging area and the high image overlapping ratio. It also integrates the photogrammetry iteration idea into the OpenMVG SFM pipeline to enhance the positioning and calibration accuracy, which includes a coarse to fine three-stage Bundle Adjustment (BA) processing approach. In this paper, the overall workflow of the proposed technique was first introduced in detail, from feature extraction and image matching, relative rotation and translation estimation, global rotation and translation estimation, and the quadrifocal tensor model construction to the three-stage BA process and calibration. Then, experiments were carried out in the Zhengzhou area, implementing four types of adjustment methods. The results suggest that the proposed quadrifocal tensor SFM photogrammetry is suitable for large tilt frame sweep camera positioning and calibration without prior information on detailed camera intrinsic parameters and structure. The modifications made to the OpenMVG SFM pipeline enhanced the precision of image positioning and calibration and provided the precision level of professional photogrammetry software.