Abstract-Investigation of a unit cell in terms of reflected wave amplitude and phase, for designing linearly polarized single layer Textile-Reflectarray (TRA) at C-band, is presented. The relative dielectric constant of the material is extracted using resonance method, and a WLAN antenna is designed to verify the accuracy of extracted material parameter. An error of 5% is observed in the extracted dielectric constant, when performance of WLAN antenna is measured at WI-FI Band (2.4 GHz). The extracted dielectric constant is used in the unit cell designing for TRA at the C-band (5.8 GHz). The radiating element is made using laying technique with conductive thread. A square patch with a ring is selected after analyzing multiple geometries of the patch providing the required reflected phase range and low losses. By varying size of patch and ring of single layer unit cell in CST periodic environment, reflected phase range of 360 degrees is achieved, which is required for reflectarray (RA) designing. The solid copper ground plane at the bottom of unit cell is replaced with conductive shielded fabric with high level signal attenuation. Four different sizes of textile unit cells are fabricated using conductive thread, and the reflected phase and amplitude are measured using waveguide method. The simulated and measured results are compared when solid copper ground plane at the bottom of unit cell has been replaced with shielded fabric. The proposed method provides the first step towards designing flexible high gain textile reflectarrays.