2021
DOI: 10.1016/j.ast.2021.106923
|View full text |Cite
|
Sign up to set email alerts
|

Geometrically nonlinear aeroelastic characteristics of highly flexible wing fabricated by additive manufacturing

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
6
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 19 publications
(7 citation statements)
references
References 21 publications
0
6
0
1
Order By: Relevance
“…Space systems require lightweight and high-performance capability that increase the complexity of system structure and manufacturing processes. Tsushima et al [139] argued that additive manufacturing should be adopted to make large flexible structures with geometrically nonlinear aeroelastic characteristics. To sense and respond a change in the space environment, sensing technologies (i.e., addressable and flexible sensor, thin film electronic matrix, and wireless sensor targets) and self-healing materials (i.e., microencapsulated elastomers) have been widely explored to meet some unique requirements of space habitats.…”
Section: ) Spacecraft Designmentioning
confidence: 99%
“…Space systems require lightweight and high-performance capability that increase the complexity of system structure and manufacturing processes. Tsushima et al [139] argued that additive manufacturing should be adopted to make large flexible structures with geometrically nonlinear aeroelastic characteristics. To sense and respond a change in the space environment, sensing technologies (i.e., addressable and flexible sensor, thin film electronic matrix, and wireless sensor targets) and self-healing materials (i.e., microencapsulated elastomers) have been widely explored to meet some unique requirements of space habitats.…”
Section: ) Spacecraft Designmentioning
confidence: 99%
“…Ayrıca, eklemeli imalat teknolojisi ile talaşlı imalat yöntemlerinde olduğu gibi parçadan malzeme kaldırarak üretim yapmak yerine, malzemeleri birbirine katman ekleyerek üretim yapıldığı için malzeme israfı minimum seviyededir [7,8]. Ek olarak, eklemeli imalat teknolojisi otomotiv [9], uzay-havacılık [10], biyomedikal [11], denizcilik ve mimari gibi birçok alanda [12,13] önemli bir role sahip olup sırasıyla çarpışma kutusu [14], uçak kanat yapıları [15], implantlar [16], iskele yapıları [17] ve ilaç salınım sistemleri [18], pervane [19] ve mimari yapılar [20] bu alanların başlıca uygulamalarındandır. Bilindiği üzere eriyik yığma modelleme metodu (EYM) ucuz, kolay ulaşılabilir ve geniş malzeme portföyüne sahip olmasından dolayı en sık kullanılan eklemeli imalat yöntemlerinden birisi olup [21], bu yöntemde eritilen filament, nozzle'dan geçerek tasarlanan parçayı oluşturmak üzere katman üretim platformuna inşa edilmektedir [22][23][24][25].…”
Section: Giriş (Introduction)unclassified
“…AM models also have challenges due to the nature of the fabrication method and the material used. The mechanical properties of AM structures highly depend on printing process parameters (Fernandes et al , 2021; Tsushima et al , 2021). Plastic models cannot usually endure several test cycles due to fatigue (Aghanajafi and Daneshmand, 2010) and are not reliable at high speeds due to their low stiffness and strength (Zhu et al , 2019b).…”
Section: Introductionmentioning
confidence: 99%
“…In fact, the low stiffness or large flexibility might be desirable and more representative of real models (Zhu et al , 2019b). Several authors (Su and Cesnik, 2011; Tsushima et al , 2021; del Carre et al , 2019) have developed geometric nonlinear aeroelastic models of flexible wings because they experience large deformations. Tsushima et al (2021) used FDM to manufacture a flexible solid rectangular wing.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation