The global impact of the COVID-19 pandemic has been profound, affecting economies and societal structures worldwide. Indonesia, with a high caseload, has encountered significant challenges across various sectors. Virus transmission primarily occurs through physical contact, and the surge in active cases has strained hospital capacities, leading to the hospitalization of only severe cases. The remaining patients receive home telecare, but some experience sudden health deterioration with fatal consequences. To address this issue, this study proposes a remote outpatient care system utilizing Internet of Things (IoT) technology and medical electronics. This integrated system aims to provide an effective response to the COVID-19 pandemic. The research includes a comparative analysis of three machine-learning algorithms: decision tree, gradient tree boosting, and random forest for the classification of COVID-19 patients. The results reveal that the random forest algorithm outperforms the others with an accuracy rate of 70%, as compared to 67% for the decision tree and 62% for the gradient tree boosting algorithm. This integrated system not only addresses immediate healthcare delivery challenges but also offers data-driven insights for patient classification, thereby enhancing the effectiveness and reach of medical interventions