We study the NP-hard Fair Connected Districting problem: Partition a vertex-colored graph into k connected components (subsequently referred to as districts) so that in each district the most frequent color occurs at most a given number of times more often than the second most frequent color. Fair Connected Districting is motivated by various realworld scenarios where agents of different types, which are one-to-one represented by nodes in a network, have to be partitioned into disjoint districts. Herein, one strives for "fair districts" without any type being in a dominating majority in any of the districts. This is to e.g. prevent segregation or political domination of some political party.Our work builds on a model recently proposed by Stoica et al. [AAMAS 2020], thereby also strengthening and extending computational hardness results from there. More specifically, with Fair Connected Districting we identify a natural, already hard special case of their Fair Connected Regrouping problem. We conduct a fine-grained analysis of the (parameterized) computational complexity of Fair Connected Districting, proving that it is polynomial-time solvable on paths, cycles, stars, caterpillars, and cliques, but already becomes NP-hard on trees. Motivated by the latter negative result, we perform a parameterized complexity analysis with respect to various graph parameters, including treewidth, and problem-specific parameters, including the numbers of colors and districts. We obtain a rich and diverse, close to complete picture of the corresponding parameterized complexity landscape (that is, a classification along the complexity classes FPT, XP, W[1]-hardness, and para-NP-hardness). Doing so, we draw a fine line between tractability and intractability and identify structural properties of the underlying graph that make Fair Connected Districting computationally hard. * This work was initiated at the research retreat of the Algorithmics and Computational Complexity group held in September 2020 in Zinnowitz, Germany.† Supported by the Deutsche Forschungsgemeinschaft (DFG), project MaMu, NI 369/19. ‡ Supported by the Deutsche Forschungsgemeinschaft (DFG), project FPTinP, NI 369/16.