2016
DOI: 10.1504/ijwmc.2016.10003274
|View full text |Cite
|
Sign up to set email alerts
|

Gesture recognition based on sparse representation

Abstract: Aiming at the problem that the robustness of gesture recognition is difficult to guarantee, this paper presents a method based on multi-features and sparse representation. Hu invariant moments and HOG features of training samples are extracted in training phase. The K-SVD algorithm is used to train the initial value of dictionary formed by two features so as to obtain two sub-dictionaries. In recognition phase, sparse coefficients of corresponding training dictionary are derived by solving minimum l 1 -norm. F… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?