Castration-resistant prostate cancer (CRPC) is a progressed stage of prostate cancer, which requires better understanding of the mechanisms and remains an unmet clinical need. As a common oncogene, K-Ras is associated with malignant behavior in different types of tumors but its role in CRPC is unknown. The present study aims to find the mechanism of K-Ras in CRPC and whether it can be used as a crucial molecule for the treatment of CRPC. For this purpose, tissue samples from primary prostate cancer (PPC) and CRPC patients were analyzed by immunohistochemistry and the data showed that K-Ras was elevated in CRPC. More importantly, higher K-Ras expression was related to a shorter recurrence-free survival time in patients with CRPC. In addition, K-Ras promoted the invasion, migration, and drug resistance of CRPC cells by activation of PLCε/PKCε signaling pathway. Meanwhile, the inhibitor of K-RasG12C mutants was able to inhibit malignant behavior of CRPC cells in vitro and in vivo. Inhibitors of K-RasG12C mutants have entered clinical trials. Taken together, the study shows that K-Ras may activate PKCε through PLCε, resulting in the alterations of malignant behavior of CRPC. Inhibitor 9, an inhibitor of the K-RasG12C mutant, has a strong anti-tumor effect in CRPC, which potentially suggests that inhibitors of this nature may serve as a promising treatment for CRPC.