Introduction. The treatment for patients with high-grade gliomas includes surgical resection of tumor, radiotherapy, and temozolomide chemotherapy. However, some patients do not respond to temozolomide due to a methylation reversal mechanism by the enzyme O6-methylguanine-DNA-methyltransferase (MGMT). In patients receiving treatment with temozolomide, this biomarker has been used as a prognostic factor. However, not all patients respond in the same way, which suggests the existence of other proteins involved in resistance to temozolomide chemotherapy. Methods. A group of thirty-one patients was recruited who were clinically and pathologically diagnosed with high-grade gliomas. The sequencing of 324 genes related to different types of cancer was performed to detect mutations. Subsequently, a statistical analysis was conducted to determine the mutated genes that were most related to resistance to treatment. Results. According to the Stupp protocol and metronomic dose of the temozolomide treatment, the mutated genes related to the second relapse of patients with high-grade glioma were PIK3C2B, KIT, ERBB3, and MLH1. Conclusions. Considering the results obtained, we suggest that mutations in the four genes and methylation of the gene promoter that codes for the MGMT protein could be related to response to treatment with temozolomide.