The determination of internal maturity parameters of table grape is usually done destructively using manual methods that are time-consuming. The possibility was investigated to determine whether key fruit attributes, namely, total soluble solids (TSS); titratable acidity (TA), TSS/TA, pH, and BrimA (TSS – k x TA) could be determined on intact table grape bunches using Fourier transform near-infrared (FT-NIR) spectroscopy and a contactless measurement mode. Partial Least Squares (PLS) regression models were developed for the maturity and sensory quality parameters using grapes obtained from two consecutive harvest seasons. Statistical indicators used to evaluate the models were the number of latent variables (LVs) used to build the model, the prediction correlation coefficient (R2p) and root mean square error of prediction (RMSEP). For the respective parameters TSS, TA, TSS/TA, pH, and BrimA, the LVs were 21, 23, 5, 7, and 24, the R2p = 0.71, 0.33, 0.57, 0.28, and 0.77, and the RMSEP = 1.52, 1.09, 7.83, 0.14, and 1.80. TSS performed best when moving smoothing windows (MSW) + multiplicative scatter correction (MSC) was used as spectral pre-processing technique, TA with standard normal variate (SNV), TSS/TA with Savitzky-Golay first derivative (SG1d), pH with SG1d, and BrimA with MSC. This study provides the first steps towards a completely nondestructive and contactless determination of internal maturity parameters of intact table grape bunches.