In this paper, we propose a host‐vector model for malaria transmission by incorporating infection age in the infected host population and nonlinear incidence for transmission from infectious vectors to susceptible hosts. One novelty of the model is that the recovered hosts only have temporary immunity and another is that successfully recovered infected hosts may become susceptible immediately. Firstly, the existence and local stability of equilibria is studied. Secondly, rigorous mathematical analyses on technical materials and necessary arguments, including asymptotic smoothness and uniform persistence of the system, are given. Thirdly, by applying the fluctuation lemma and the approach of Lyapunov functionals, the threshold dynamics of the model for a special case were established. Roughly speaking, the disease‐free equilibrium is globally asymptotically stable when the basic reproduction number is less than one and otherwise the endemic equilibrium is globally asymptotically stable when no reinfection occurs. It is shown that the infection age and nonlinear incidence not only impact on the basic reproduction number but also could affect the values of the endemic steady state. Numerical simulations were performed to support the theoretical results.