The asymptotic perturbation method is used to analyze the nonlinear vibrations and chaotic dynamics of a rotor-active magnetic bearing (AMB) system with 16-pole legs and the time-varying stiffness. Based on the expressions of the electromagnetic force resultants, the influences of some parameters, such as the cross-sectional area Aα of one electromagnet and the number N of windings in each electromagnet coil, on the electromagnetic force resultants are considered for the rotor-AMB system with 16-pole legs. Based on the Newton law, the governing equation of motion for the rotor-AMB system with 16-pole legs is obtained and expressed as a two-degree-of-freedom system with the parametric excitation and the quadratic and cubic nonlinearities. According to the asymptotic perturbation method, the four-dimensional averaged equation of the rotor-AMB system is derived under the case of 1 : 1 internal resonance and 1 : 2 subharmonic resonances. Then, the frequency-response curves are employed to study the steady-state solutions of the modal amplitudes. From the analysis of the frequency responses, both the hardening-type nonlinearity and the softening-type nonlinearity are observed in the rotor-AMB system. Based on the numerical solutions of the averaged equation, the changed procedure of the nonlinear dynamic behaviors of the rotor-AMB system with the control parameter is described by the bifurcation diagram. From the numerical simulations, the periodic, quasiperiodic, and chaotic motions are observed in the rotor-active magnetic bearing (AMB) system with 16-pole legs, the time-varying stiffness, and the quadratic and cubic nonlinearities.