Towards low-carbon energy systems, there are countries with ongoing plans for expanding their nuclear power capacity, and simultaneously advancing the role of variable renewable energy sources (RES), namely wind and solar energy. This crossroads of capital-intensive, baseload power production and uncontrollable, intermittent RES may entail new challenges in the optimal and economic operation of power systems. This study examines this case by hourly analysis of a national-level energy system with the EnergyPLAN modeling tool, coupled with wind integration simulations (including uncertainty) implemented using MATLAB. We evaluate the maximum feasible wind integration under different scenarios for nuclear power plants, energy demand, and the flexibility of energy infrastructure for a real case study (Finland). We propose wind-nuclear compromise charts to envision the impact of any mix of these two technologies on four parameters: total costs, power exchange, carbon emissions, and renewable energy integration. The results suggest that nuclear power constrains the room for maximum uptake of wind energy by a descending parabolic relationship. If nuclear power production exceeds 50% of the total power demand, wind will be unlikely to penetrate in shares over 15% of the respective demand. Moreover, we investigate the role of four flexibility options: demand side management, electrical energy storage, smart electric heating, and large-scale heat pumps (backed with thermal energy storage). Heat pumps (which are in connection with combined heat and power (CHP) and district heating systems) offer the highest efficiency in balancing excess power from variable RES. However, power-to-heat options offer a limited
OPEN ACCESSEnergies 2015, 8 2494 capability for absorbing high-level excess power, as oversupply arises mainly in the periods with relatively low demand for heat. This calls for longer-term energy storage and/or other flexibility options to achieve the planned targets in wind-nuclear scenarios.