This paper deals with the problem of global stability of stochastic reaction-diffusion recurrent neural networks with continuously distributed delays and Dirichlet boundary conditions. The influence of diffusion, noise and continuously distributed delays upon the stability of the concerned system is discussed. New stability conditions are presented by using of Lyapunov method, inequality techniques and stochastic analysis. Under these sufficient conditions, globally exponential stability in the mean square holds, regardless of system delays. The proposed results extend those in the earlier literature and are easier to verify.