Finite-time stability and finite-time boundedness of fractional order switched systems with [Formula: see text] are investigated in this paper. First of all, by employing the average dwell time technique and Lyapunov functional method, some sufficient conditions for finite-time stability and finite-time boundedness of fractional order switched systems are proposed. Furthermore, the state feedback controllers are constructed, and sufficient conditions are given to ensure that the corresponding closed-loop systems are finite-time stable and finite-time bounded. These conditions can be easily obtained in terms of linear matrix inequalities. Finally, two numerical examples are given to show the effectiveness of the results.