Summary. This paper focuses on the optimization of the design and operation of combined heat and power plants (cogeneration plants). Due to the complexity of such an optimization task, conventional optimization methods consider only one operation point that is usually the full-load case. However, the frequent changes in demand lead to operation in several partial-load conditions. To guarantee a technically feasible and economically sound operation, we present a mathematical programming formulation of a model that considers the partial-load operation already in the design phase of the plant. This leads to a nonconvex mixed-integer nonlinear program (MINLP) due to discrete decisions in the design phase and discrete variables and nonlinear equations describing the thermodynamic status and behavior of the plant. The model is solved using an extended Branch and Cut algorithm that is implemented in the solver LaGO. We describe conventional optimization approaches and show that without consideration of different operation points, a flexible operation of the plant may be impossible. Further, we address the problem associated with the uncertain cost functions for plant components.Keywords. cogeneration plant, partial load performance, design optimization, cost minimization, nonconvex mixed-integer nonlinear programming, branch and cut
IntroductionIn deregulated energy markets the optimization of the design and operation of energy conversion plants becomes increasingly important. To reduce the product cost during the entire operation time of a plant, both selection of an optimal plant structure and selection of optimal operating parameters in different load situations are necessary. Several design optimization methods were developed and applied to energy conversion systems in the past, e.g.,