The advent of genome-scale models of metabolism has laid the foundation for the development of computational procedures for suggesting genetic manipulations that lead to overproduction. In this work, the computational OptKnock framework is introduced for suggesting gene deletion strategies leading to the overproduction of chemicals or biochemicals in E. coli. This is accomplished by ensuring that a drain towards growth resources (i.e., carbon, redox potential, and energy) must be accompanied, due to stoichiometry, by the production of a desired product. Computational results for gene deletions for succinate, lactate, and 1,3-propanediol (PDO) production are in good agreement with mutant strains published in the literature. While some of the suggested deletion strategies are straightforward and involve eliminating competing reaction pathways, many others suggest complex and nonintuitive mechanisms of compensating for the removed functionalities. Finally, the OptKnock procedure, by coupling biomass formation with chemical production, hints at a growth selection/adaptation system for indirectly evolving overproducing mutants.
In this paper, we introduce the Flux Coupling Finder (FCF) framework for elucidating the topological and flux connectivity features of genome-scale metabolic networks. The framework is demonstrated on genome-scale metabolic reconstructions of Helicobacter pylori, Escherichia coli, and Saccharomyces cerevisiae. The analysis allows one to determine whether any two metabolic fluxes, v 1 and v 2 , are (1) directionally coupled, if a non-zero flux for v 1 implies a non-zero flux for v 2 but not necessarily the reverse; (2) partially coupled, if a non-zero flux for v 1 implies a non-zero, though variable, flux for v 2 and vice versa; or (3) fully coupled, if a non-zero flux for v 1 implies not only a non-zero but also a fixed flux for v 2 and vice versa. Flux coupling analysis also enables the global identification of blocked reactions, which are all reactions incapable of carrying flux under a certain condition; equivalent knockouts, defined as the set of all possible reactions whose deletion forces the flux through a particular reaction to zero; and sets of affected reactions denoting all reactions whose fluxes are forced to zero if a particular reaction is deleted. The FCF approach thus provides a novel and versatile tool for aiding metabolic reconstructions and guiding genetic manipulations.[Supplemental material is available online at www.genome.org.]An overarching attribute of metabolic networks is their inherent robustness and ability to cope with ever-changing environmental conditions. Despite this flexibility, network stoichiometry and connectivity do establish limits/barriers to the coordination and accessibility of reactions. The recent abundance of complete genome sequences has enabled the generation of genome-scale metabolic reconstructions for various microorganisms (Covert et al. 2001;Price et al. 2003;. These models provide a largely complete skeleton of the metabolic reactions present in an organism. Examination of the structural and topological properties of metabolic networks is important at both the conceptual level, to reveal the organizational principles of metabolic interactions within cellular networks, and at the practical level for more effectively focusing engineering interventions and ensuring the consistency of the underlying reconstructions.To this end, the identification of blocked reactions (i.e., reactions incapable of carrying flux due to the stoichiometry of the metabolic network under steady-state conditions) and enzyme subsets (i.e., groups of reactions that operate together in fixed flux proportions under steady-state conditions) in metabolic models has attracted considerable interest
Microorganisms rarely live isolated in their natural environments but rather function in consolidated and socializing communities. Despite the growing availability of high-throughput sequencing and metagenomic data, we still know very little about the metabolic contributions of individual microbial players within an ecological niche and the extent and directionality of interactions among them. This calls for development of efficient modeling frameworks to shed light on less understood aspects of metabolism in microbial communities. Here, we introduce OptCom, a comprehensive flux balance analysis framework for microbial communities, which relies on a multi-level and multi-objective optimization formulation to properly describe trade-offs between individual vs. community level fitness criteria. In contrast to earlier approaches that rely on a single objective function, here, we consider species-level fitness criteria for the inner problems while relying on community-level objective maximization for the outer problem. OptCom is general enough to capture any type of interactions (positive, negative or combinations thereof) and is capable of accommodating any number of microbial species (or guilds) involved. We applied OptCom to quantify the syntrophic association in a well-characterized two-species microbial system, assess the level of sub-optimal growth in phototrophic microbial mats, and elucidate the extent and direction of inter-species metabolite and electron transfer in a model microbial community. We also used OptCom to examine addition of a new member to an existing community. Our study demonstrates the importance of trade-offs between species- and community-level fitness driving forces and lays the foundation for metabolic-driven analysis of various types of interactions in multi-species microbial systems using genome-scale metabolic models.
Abstract.A branch and bound global optimization method, BB, for general continuous optimization problems involving nonconvexities in the objective function and/or constraints is presented. The nonconvexities are categorized as being either of special structure or generic. A convex relaxation of the original nonconvex problem is obtained by (i) replacing all nonconvex terms of special structure (i.e. bilinear, fractional, signomial) with customized tight convex lower bounding functions and (ii) by utilizing the parameter as defined in [17] to underestimate nonconvex terms of generic structure. The proposed branch and bound type algorithm attains finite -convergence to the global minimum through the successive subdivision of the original region and the subsequent solution of a series of nonlinear convex minimization problems. The global optimization method, BB, is implemented in C and tested on a variety of example problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.