In many engineering systems, it is not enough to merge the system paths to zero at infinite time, but the speed of moving these paths to zero is very important. Estimating this speed can be done using exponential functions. This concept is used in exponential stability definition. The purpose of this paper is to design a controller for problem inputs and implement a system of a car with N to a trailer connected to it. This approach is based on the analysis of the Lyapunov stability method. In the given problem, the purpose of conducting and converging the system considering the slip phenomenon as a primitive uncertainty in the system is toward the desired point. Since the trailer tractor system has limitation constraints in the modeling structure, it is difficult to guarantee the stability of a non-holonomic system. Because no controller designed by the control feedback method can continuously and stable ensure the convergence of the system. If this possibility almost dynamic errors, even adaptive controls do not versatile with the operation of the Lyapunov function, especially in the presence of uncertainties, which is a very important factor in system instability, which requires the development of controllers designed to deal with these disturbances. In the simulated results, this paper not only examines the convergence properties, but also shows the ability to control the system by designing a controller in the presence of a slip phenomenon to strengthen the system in the stability debate.