In this paper, Lyapunov-Razumikhin technique, design of state-dependent switching laws, a fixed point theorem and variational methods are employed to derive the existence and the unique existence results of (globally) exponentially stable positive stationary solution of delayed reaction-diffusion cell neural networks under Dirichlet zero boundary value, including the global stability criteria \textbf{in the classical meaning}. Next, sufficient conditions are proposed to guarantee the global stability invariance of ordinary differential systems under the influence of diffusions. New theorems show that the diffusion is a double-edged sword in judging the stability of diffusion systems. Besides, an example is constructed to illuminate that any non-zero constant equilibrium point must be not in the phase plane of dynamic system under Dirichlet zero boundary value, or it must lead to a contradiction. Next, under Lipschitz assumptions on active function, another example is designed to prove that the small diffusion effect will cause the essential change of the phase plane structure of the dynamic behavior of the delayed neural networks via a Saddle point theorem. Finally, a numerical example illustrates the feasibility of the proposed methods.