We consider a closed Nutrient-Phytoplankton-Zooplankton (NPZ) model that allows for a delay in the nutrient recycling. A delay-dependent conservation law allows us to quantify the total biomass in the system. With this, we can investigate how a planktonic ecosystem is affected by the quantity of biomass it contains and by the properties of the delay distribution. The quantity of biomass and the length of the delay play a significant role in determining the existence of equilibrium solutions, since a sufficiently small amount of biomass or a long enough delay can lead to the extinction of a species. Furthermore, the quantity of biomass and length of delay are important since a small change in either can change the stability of an equilibrium solution. We explore these effects for a variety of delay distributions using both analytical and numerical techniques, and verify these results with simulations.