In this paper, I consider two species feeding on limiting substrate in a chemostat taking into account some possible effects of each species on the other one. System of differential equations is proposed as model of these effects with general inter-specific density-dependent growth rates. Three cases were considered. The first one for a mutual inhibitory relationship where it is proved that at most one species can survive which confirms the competitive exclusion principle. Initial concentrations of species have great importance in determination of which species is the winner. The second one for a food web relationship where it is proved that under general assumptions on the dilution rate, both species persist for any initial conditions. Finally, a third case dealing with an obligate mutualistic relationship was discussed. It is proved that initial condition has a great importance in determination of persistence or extinction of both species.
In this paper, we consider a simple chemostat model involving two obligate mutualistic species feeding on a limiting substrate. Systems of differential equations are proposed as models of this association. A detailed qualitative analysis is carried out. We show the existence of a domain of coexistence, which is a set of initial conditions in which both species survive. We demonstrate, under certain supplementary assumptions, the uniqueness of the stable equilibrium point which corresponds to the coexistence of the two species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.