Increased glucose uptake is a known hallmark of cancer. Cancer cells need glucose for energy production via glycolysis and the tricarboxylic acid cycle, and also to fuel the pentose phosphate pathway, the serine biosynthetic pathway, lipogenesis, and the hexosamine pathway. For this reason, glucose transport inhibition is an emerging new treatment for different malignancies, including lung cancer. However, studies both in animal models and in humans have shown high levels of heterogeneity in the utilization of glucose and other metabolites in cancer, unveiling a complexity that is difficult to target therapeutically. Here, we present an overview of different levels of heterogeneity in glucose uptake and utilization in lung cancer, with diagnostic and therapeutic implications.