BackgroundThe cellular response of malignant tumors to hypoxia is diverse. Several important endogenous metabolic markers are upregulated under hypoxic conditions. We examined the staining patterns and co-expression of HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4 with the exogenous hypoxic cell marker pimonidazole and the association of marker expression with clinicopathological characteristics.Methods20 biopsies of advanced head and neck carcinomas were immunohistochemically stained and analyzed. All patients were given the hypoxia marker pimonidazole intravenously 2 h prior to biopsy taking. The tumor area positive for each marker, the colocalization of the different markers and the distribution of the markers in relation to the blood vessels were assessed by semiautomatic quantitative analysis.ResultsMCT1 staining was present in hypoxic (pimonidazole stained) as well as non-hypoxic areas in almost equal amounts. MCT1 expression showed a significant overall correlation (r = 0.75, p < 0.001) and strong spatial relationship with CAIX. LDH-5 showed the strongest correlation with pimonidazole (r = 0.66, p = 0.002). MCT4 and GLUT-1 demonstrated a typical diffusion-limited hypoxic pattern and showed a high degree of colocalization. Both MCT4 and CAIX showed a higher expression in the primary tumor in node positive patients (p = 0.09 both).ConclusionsColocalization and staining patterns of metabolic and hypoxia-related proteins provides valuable additional information over single protein analyses and can improve the understanding of their functions and environmental influences.
TNF-alpha may improve drug delivery to tumors by alteration of vascular permeability. However, toxicity precludes its systemic administration in patients. NGR-TNF comprises TNF coupled to the peptide CNGRC, which is a ligand for CD13. CD13 is expressed on tumor vasculature. Therefore, to assess the efficacy of NGR-TNF its biological effect on tumor vasculature should be measured rather than its effect on tumor growth. The aim of this study was to assess the effects of a low dose of NGR-TNF (5 ng/kg) on vascular permeability, tumor hypoxia, perfusion and proliferation in lymphoma bearing mice. MRI measurements with blood pool contrast agent showed an increased leakage of the contrast agent from the vasculature in NGR-TNF treated tumors compared with controls (p < 0.05), suggesting NGR-TNF-induced vascular permeability. Immunohistochemical analysis two hours after NGR-TNF treatment showed a decrease in tumor hypoxia (p < 0.1) and an increase in labeling index of the S-phase marker bromodeoxyuridine (p < 0.1), possibly due to an increase in tumor blood flow after NGR-TNF treatment. Although a decrease in tumor hypoxia and an increase in labeling index could have lead to increased tumor growth, in this experiment after one day a decrease in tumor volume was measured. Possibly, the effects on tumor hypoxia and proliferation two hours after treatment are transient and overruled by other, more longlasting effects. For example, the observed increase in vascular permeability may lead to haemoconcentration and increased interstitial pressure, ultimately resulting in an reduction of tumor blood flow and thus a decrease in tumor growth. A beneficial effect of NGR-TNF in combination with other therapeutical agents may therefore critically depend on the sequence and timing of the regimens. Currently, NGR-TNF is being tested in clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.