The phosphatidylinositol-3-kinase (PI3-K)/protein kinase B (AKT) pathway is associated with all three major radiation resistance mechanisms: intrinsic radiosensitivity, tumor cell proliferation, and hypoxia. In cell signaling cascades, the PI3-K/AKT signaling pathway is a key regulator of normal and cancerous growth and cell fate decisions by processes such as proliferation, invasion, apoptosis, and induction of hypoxia-related proteins. Activation of this pathway can be the result of stimulation of receptor tyrosine kinases such as epidermal growth factor receptor or vascular endothelial growth factor receptor or from mutations or amplification of PI3-K or AKT itself which are frequently found in non-small cell lung cancer (NSCLC). Furthermore, several treatment modalities such as radiotherapy can stimulate this survival pathway. Monitoring and manipulation of this signal transduction pathway may have important implications for the management of NSCLC. Strong and independent associations were found between expression of activated AKT (pAKT) and treatment outcome in clinical trials. Direct targeting and inhibition of this pathway may increase radiosensitivity by antagonizing the radiation induced cellular defense mechanisms especially in tumors that have activated the PI3-K/AKT cascade. To successfully implement these treatments in daily practice, there is a need for molecular predictors of sensitivity to inhibitors of PI3-K/AKT activation. In conclusion, the PI3-K/AKT pathway plays a crucial role in cellular defense mechanisms. Therefore, quantification of the activation status is a potential parameter for predicting treatment outcome. More importantly, specific targeting of this pathway in combination with radiotherapy or chemotherapy may enhance tumor control in NSCLC by antagonizing cellular defense in response to treatment.
Our findings suggest that the adenocarcinomas exhibit glycolysis under normoxic conditions, whereas squamous cell carcinomas are exposed to diffusion-limited hypoxia resulting in a very high anaerobic glycolytic rate. Although squamous cell carcinomas have a higher FDG-uptake, in general regarded as a poor prognostic factor, adenocarcinomas have a higher metastatic potential and a worse DFS. These findings show that FDG-PET should be interpreted in relation to histology. This may improve the prognostic potential of FDG-PET and may aid in exploiting FDG-PET in treatment strategies allied to histology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.