The effect and the mechanism of high glucose on fish muscle cells are not fully understood. In the present study, muscle cells of olive flounder (Paralichthys olivaceus) were treated with high glucose (33 mM) in vitro. Cells were incubated in three kinds of medium containing 5 mM glucose, 5 mM glucose and 28 mM mannitol (as an isotonic contrast) or 33 mM glucose named the Control group, the Mannitol group and the HG (high glucose) group, respectively. Results showed that high glucose increased the ADP/ATP ratio and the reactive oxygen species (ROS) level, decreased mitochondrial membrane potential (MMP), induced the release of cytochrome C (CytC) and cell apoptosis. High glucose also led to cell glycogen accumulation by increasing the glucose uptake ability and affecting the mRNA expressions of glycogen synthase and glycogen phosphorylase. Meanwhile, it activated AMP-activated protein kinase (AMPK), inhibited the activity of mammalian target of rapamycin (mTOR) signaling pathway and the expressions of myogenic regulatory factors (MRFs). The expressions of myostatin-1 (mstn-1) and E3 ubiquitin ligases including muscle RING-finger protein 1 (murf-1) and muscle atrophy F-box protein (mafbx) were also increased by the high glucose treatment. No difference was found between the Mannitol group and the Control group. These results demonstrate that high glucose has the effects of inducing apoptosis, increasing glycogen accumulation and inhibiting protein synthesis on muscle cells of olive flounder. The mitochondria mediated apoptotic signaling pathway, AMPK and mTOR pathways participated in these biological effects.