Candida albicans glucosamine-6-phosphate (GlcN-6-P) synthase was purified to apparent homogeneity with 52% yield from recombinant yeast YRSC-65 cells efficiently overexpressing the GFA1 gene. The pure enzyme exhibited K m(Gln) ؍ 1.56 mM and K m(Fru-6-P) ؍ 1.41 mM and catalyzed GlcN-6-P formation with k cat ؍ 1150 min ؊1 . The isoelectric point of 4.6 ؎ 0.05 was estimated from isoelectric chromatofocusing. Gel filtration, native polyacrylamide gel electrophoresis, subunit cross-linking, and SDS-polyacrylamide gel electrophoresis showed that the native enzyme was a homotetramer of 79.5-kDa subunits, with an apparent molecular mass of 330 -340 kDa. Results of chemical modification of the enzyme by group-specific reagents established an essential role of a cysteinyl residue at the glutamine-binding site and histidyl, lysyl, arginyl, and tyrosyl moieties at the Fru-6-Pbinding site. GlcN-6-P synthase in crude extract was effectively inhibited by UDP-GlcNAc (IC 50 ؍ 0.67 mM). Purification of the enzyme markedly decreased the sensitivity to the inhibitor, but this could be restored by addition of another effector, glucose 6-phosphate. Binding of UDP-GlcNAc to the pure enzyme in the presence of Glc-6-P showed strong negative cooperativity, with n H ؍ 0.54, whereas in the absence of this sugar phosphate no cooperative effect was observed. Pure enzyme was a substrate for cAMP-dependent protein kinase, the action of which led to the substantial increase of GlcN-6-P synthase activity, correlated with an extent of protein phosphorylation. The maximal level of activity was observed for the enzyme molecules containing 1.21 ؎ 0.08 mol of phosphate/mol of GlcN-6-P synthase. Monitoring of GlcN-6-P synthase activity and its sensitivity to UDP-GlcNAc during yeast 3 mycelia transformation of C. albicans cells, under in situ conditions, revealed a marked increase of the former and a substantial fall of the latter.