Background Osteoblast differentiation is a vital process for fracture healing, and exosomes are nanosized membrane vesicles that can deliver therapeutic drugs easily and safely. Macrophages participate in the regulation of various biological processes in vivo , and macrophage-derived exosomes (MD-Exos) have recently been a topic of increasing research interest. However, few study has explored the link between MD-Exos and osteoblast differentiation. Herein, we sought to identify miRNAs differentially expressed between M1 and M2 macrophage-derived exosomes, and to evaluate their roles in the context of osteoblast differentiation. Results We found that microRNA-5106 (miR-5106) was significantly overexpressed in M2 macrophage-derived exosomes (M2D-Exos), while its expression was decreased in M1 macrophage-derived exosomes (M1D-Exos), and we found that this exosomal miRNA can induce bone mesenchymal stem cell (BMSC) osteogenic differentiation via directly targeting the Salt-inducible kinase 2 and 3 ( SIK2 and SIK3 ) genes. In addition, the local injection of both a miR-5106 agonist or M2D-Exos to fracture sites was sufficient to accelerate healing in vivo . Conclusions Our study demonstrates that miR-5106 is highly enriched in M2D-Exos, and that it can be transferred to BMSCs wherein it targets SIK2 and SIK3 genes to promote osteoblast differentiation.