Glycopolymers, conjugates of synthetic polymers with pendant carbohydrates, are becoming increasingly important to probe the role of carbohydrates in cellular processes and for applications like biosensors and drug delivery. A library of glycopolymers bearing different sugar moieties was synthesized by grafting amino-functionalized sugars to poly(acrylic acid) via DMTMM coupling. Primary amines were introduced at the anomeric (C-1) position to a number of unprotected mono-, di-, and trisaccharides using ammonium carbamate and conjugated to poly(acrylic acid) of different molecular weights, synthesized by reversible addition−fragmentation chain transfer (RAFT) polymerization. This approach provides a simple and efficient route for the preparation of glycopolymers that differ only in the identity or degree of substitution of the sugar moiety on the polymer. The binding parameters (k a , k d , and K D ) of these new glycopolymers to galectins-1 and -3 were quantified using surface plasmon resonance. The galectins selectively bound only to lactose-containing polymers, and the binding affinity was dependent on the galectin type, degree of sugar substitution and the molecular weight of polymer chains. Binding to both galectin-1 and -3 increased with a higher degree of sugar substitution, and higher molecular weight of the polymer backbone, reaching K D values on the order of 10 −11 M.