Rationale
Circulating glycoprotein N-acetyl glucosamine residues have recently been associated with incident cardiovascular disease (CVD) and diabetes mellitus.
Objective
Using a plasma glycan biosignature (GlycA) to identify circulating N-acetyl glycan groups, we examined the longitudinal association between GlycA and mortality among initially-healthy individuals.
Methods and Results
We quantified GlycA by 400 MHz 1H nuclear magnetic resonance (NMR) spectroscopy in 27,524 participants in the Women's Health Study (WHS; NCT00000479). The primary outcome was all-cause mortality. We replicated the findings in an independent cohort of 12,527 individuals in the JUPITER trial (NCT00239681). We also undertook secondary examination of CVD and cancer mortality in WHS. In WHS, during 524,515 person-years of follow-up (median 20.5 years) there were 3,523 deaths. Risk-factor adjusted multivariable Cox proportional hazard ratio (95% confidence interval) per standard deviation increment in GlycA for all-cause mortality was significantly increased at 5-years (1.21 [1.06, 1.40]) and during maximal follow-up (1.14 [1.09, 1.16]). Similar risk for all-cause mortality was observed in the replication cohort (1.33 [1.21, 1.45]). In WHS, risk of CVD mortality was increased at 5-years (1.43 [1.05, 1.95]) and during maximal follow-up (1.15 [1.04, 1.26]); and of cancer mortality at 5-years (1.23 [1.02, 1.47]) and during maximal follow-up (1.08 [1.01, 1.16]). Examination of correlations and mortality associations adjusted for hsCRP, fibrinogen, and ICAM-1, suggested that GlycA reflects summative risk related to multiple pathways of systemic inflammation.
Conclusions
Among initially-healthy individuals, elevated baseline circulating glycoprotein N-acetyl methyl groups were associated with longitudinal risk of all-cause, cardiovascular, and cancer mortality.