Background: As we all know, bacterial and fungal infections have become one of the threats to human health. Microbial secondary metabolites are one of the main sources of bioactive natural products. It is estimated that around 60% of all foregone antibiotics are derived from secondary metabolites produced by filamentous actinomycete bacteria. Gordonia spp. are members of the actinomycete family, their contribution to the environment improvement and environmental protection by their biological degradation ability, but there are few studies on their antimicrobial activity of their secondary metabolites. Our team isolated a Gordonia strain WA 4-31 with anti-Candida albicans activity from the intestinal tract of Periplaneta americana in the early stage.Results: In this study, we firstly identified the strain WA 4-31 by the morphological characteristics and the phylogenetic analyses, and found that it homologous to a strain of Gordonia from the Indian desert (EU333873) by 100%. Then four compounds, Actinomycin D (1), Actinomycin X2 (2), Mojavensin A (3) and cyclic (leucine-leucne) dipeptide (4) were purified from the EtOH extract of the fermented broth of the strain. The compounds 1-4 had activities against Candida albicans, Aspergillus niger, Aspergillus fumigatus and Trichophyton rubrum. They also had activities against MRSA, S.aureus, K.peneumoniae and E.coli in different degree. The minimum inhibitory concentration of Actinomycin D and Actinomycin X2 on MASA was 0.25 μg/mL. Interestingly, we found that when Mojavensin A was mixed with compound 4 ratio of 1:1, the solution of the compounds was better than the single on anti-Candida albicans. Besides, compounds 1-3 had varying degrees of cytotoxicity on CNE-2 cells and HepG-2 cells.Conclusions: The present study firstly reported the antimicrobial compounds isolated from Gordonia. These indicated that rare actinomycetes from the intestinal tract of Periplaneta americana possessed a potential as a source of active secondary metabolites.