2012
DOI: 10.1134/s0012266112010053
|View full text |Cite
|
Sign up to set email alerts
|

Goursat problem for two-dimensional second-order hyperbolic operator-differential equations with variable domains

Abstract: We develop a modification of the energy inequality method and use it to prove the well-posedness of the Goursat problem for linear second-order hyperbolic differential equations with operator coefficients whose domains depend on the two-dimensional time. An energy inequality for strong solutions of this Goursat problem is derived with the help of abstract smoothing operators, and we prove that the range of the problem is dense by using properties of a regularizing Cauchy problem whose inverse operator is a fam… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 3 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?