We develop a modification of the energy inequality method and use it to prove the well-posedness of the Goursat problem for linear second-order hyperbolic differential equations with operator coefficients whose domains depend on the two-dimensional time. An energy inequality for strong solutions of this Goursat problem is derived with the help of abstract smoothing operators, and we prove that the range of the problem is dense by using properties of a regularizing Cauchy problem whose inverse operator is a family of smoothing operators of a new type. We give an example of a well-posed boundary value problem for a two-dimensional complete second-order hyperbolic partial differential equation with Goursat conditions and with a boundary condition depending on the two-dimensional time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.