The Hu-Bao-O-Yu urban agglomeration is an important energy exporting and high-end chemical base in China, and is an important source of carbon emissions in China. The early achievement of peak carbon emissions in this region is particularly crucial to achieving the national carbon emission reduction targets. However, there is a lack of multi-factor system dynamics analysis of resource-dependent urban agglomerations in Northwest China, as most studies have focused on single or static aspects of developed urban agglomerations. This paper analyses the relationship between carbon emissions and their influencing factors, constructs a carbon emission system dynamics model for the Hu-Bao-O-Yu urban agglomeration, and sets up different single regulation and comprehensive regulation scenarios to simulate and predict the carbon peak time, peak value, and emission reduction potential of each city and urban agglomeration under different scenarios. The results show that: (1) Hohhot and Baotou are expected to reach peak carbon by 2033 and 2031 respectively, under the baseline scenario, while other regions and the urban agglomeration will not be able to reach peak carbon by 2035. (2) Under single regulation scenarios, the effect of factors other than the energy consumption varies across cities, but the energy consumption and environmental protection input are the main factors affecting carbon emissions in the urban agglomeration. (3) A combination of the economic growth, industrial structure, energy policy, environmental protection, and technology investment is the best measure to achieve carbon peaking and enhance the carbon emission reduction in each region as soon as possible. In the future, we need to coordinate the economic development, energy structure optimisation and transformation, low-carbon transformation of industry, strengthen research on carbon sequestration technology, and further increase the investment in environmental protection to make the Hu-Bao-O-Yu urban agglomeration a resource-saving urban agglomeration with an optimal emission reduction.